- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0010000002000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Biros, George (3)
-
Ghafouri, Ali (3)
-
Wen, Zheyu (2)
-
Chen, Chao (1)
-
Ruys, William (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Ruys, William; Ghafouri, Ali; Chen, Chao; Biros, George (, ACM Transactions on Parallel Computing)Constructing k-nearest neighbor (kNN) graphs is a fundamental component in many machine learning and scientific computing applications. Despite its prevalence, efficiently building all-nearest-neighbor graphs at scale on distributed heterogeneous HPC systems remains challenging, especially for large sparse non-integer datasets. We introduce optimizations for algorithms based on forests of random projection trees. Our novel GPU kernels for batched, within leaf, exact searches achieve 1.18× speedup over sparse reference kernels with less peak memory, and up to 19× speedup over CPU for memory-intensive problems. Our library,PyRKNN, implements distributed randomized projection forests for approximate kNN search. Optimizations to reduce and hide communication overhead allow us to achieve 5× speedup, in per iteration performance, relative to GOFMM (another projection tree, MPI-based kNN library), for a 64M 128d dataset on 1,024 processes. On a single-node we achieve speedup over FAISS-GPU for dense datasets and up to 10× speedup over CPU-only libraries.PyRKNNuniquely supports distributed memory kNN graph construction for both dense and sparse coordinates on CPU and GPU accelerators.more » « lessFree, publicly-accessible full text available September 30, 2026
-
Wen, Zheyu; Ghafouri, Ali; Biros, George (, Springer Nature Switzerland)
An official website of the United States government
